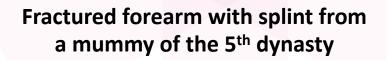


Orthopaedic Fragment Plating

FIG. 14.---Adjusting improved splint on a litter patient, Broussey, France, April 20, 1918

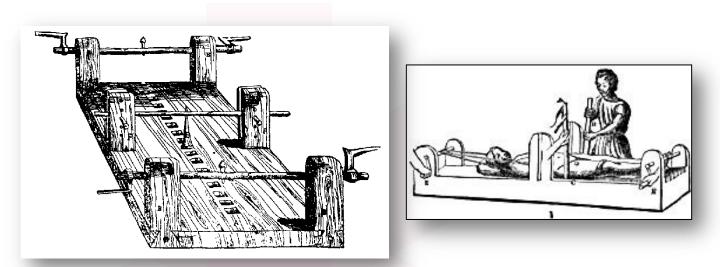
Egypt 2000BC – 3000BC

Earliest data...?


Imhotep (Edwin-Smith Surgical Papyrus) describes reduction of fractures, immobilisation with splints and bandages.

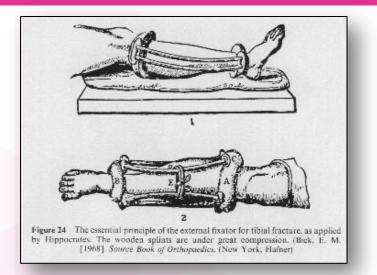
Ancient fractures

Greece 430BC – 330BC



Hippocrates 'Father of Medicine'

Hippocrates


Invented and constructed the first fracture table the Hippocratic Bench or Scamnum

Used bandaging technique using oil and wine

Hippocrates

Produced a volume in 'Corpus Hippocrates' on joints

Used splints for tibial fractures - External Fixation

First to use systematic and scientific approach

Romans 200BC - 100AD

Galen

Influential anatomist Treated Gladiator fractures Described support bandaging First described Spica

The Dark Ages!

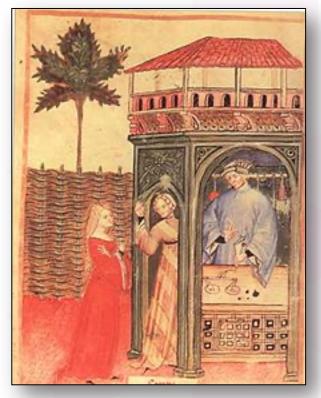
Islamic Empire 900AD - 1100AD

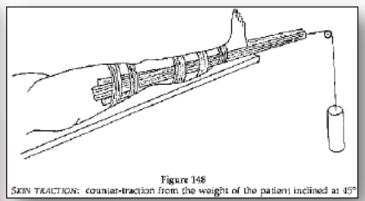
Al-Razi (Razes) 841-926 AD

Ibn-Sina (Avicenna) 980-1037 AD

Al-Zahrawi (Albucasis) 930-1013AD

Differentiated between different types of fractures: avulsion, crushing, penetrating reaching the membrane or superficial, hairline fractures.


Practised open reduction/ treated malunion


Used mill dust and eggs to make plaster casts

Guy de Chauliac - 14th Century

Published 'Book of Fractures'

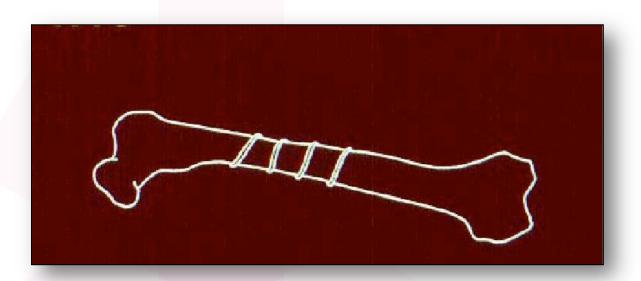
Prescribed isometric traction using weight, cord and pulley

Ambroise Paré - 16th century

Artificial limbs for soldiers

Master Barber Surgeon.

'Father of modern surgery'


Described hip fracture treatment

Described fracture manipulation

1770 - France

Mr Lapujode and Mr Sicre in Toulouse performed first brass cerclage wire procedure

Nicholas Andry - late 18th century

Translated Orthopaedia from Greek words

Óρθος, straight and Πάίδον, a child

'to apply as soon as possible a small plate of iron on the hollow side of the leg and fasten it about the leg with a linen roller. In a word, the same method must be used in this case, For recovering the shape of the leg, as is used for making straight the crooked trunk of a young tree'

Antonius Mathijsen - mid 19th century

Required effective battlefield solution Revived ancient Arabic treatment Introduced roller bandages c.1852 Soaked in gypsum


Plaster of Paris

Dutch Army Surgeon

Hugh Arbuthnot Lane 1856-1943

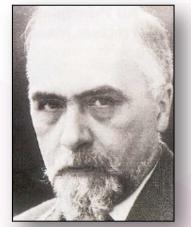
1893 introduced steel screws

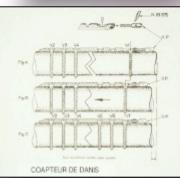
1905 Improved technique to include plates

These techniques are still in use today

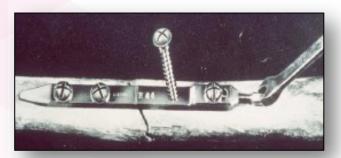
Albin Lambotte 1866-1955

Produced his own implants


Osteosynthesis


Used plate fixation

Robert Danis 1880-1962



Pioneer in compression plating

Stimulus for founding of AO 1958

AO Foundation (Arbeitsgemeinschaft für Osteosynthesefragen) 'Association for the study of questions of surgical fracture fixation'

Professor Maurice Muller 1918-2009

Founder AO member

First to use hex in screw head

Developed compression hole 1963

Pre contoured plates - 2001

LISS plate introduced - 2001

L ess I nvasive S tabilisation S ystem


Fragment locking plates - 2006

Polyaxial locking plates - 2006

Non Contact Bridging - NCB

Fragment plating training

What is a fracture?

A fracture is a soft tissue injury complicated by the presence of a broken bone. The successful treatment of the fracture is determined by the treatment of the soft tissues.

Synthes AO Fracture Fixation Course 2008

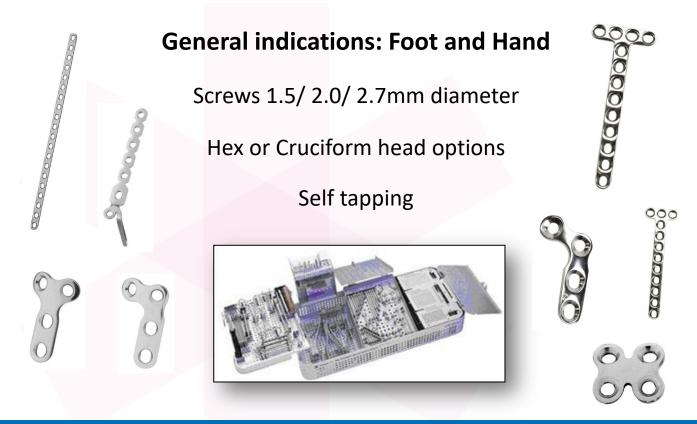
The 4 goals of fracture fixation

1. Anatomic Reduction

2. Stable Fixation

3. Preservation of blood supply and handling of soft tissue

4. Early mobilization of the patient



Mini Fragment Set

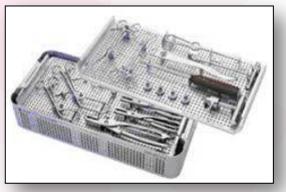
Small Fragment Set

Large Fragment Set

General indications : Femur, Tibia, Humerus

Screws 4.5mm and 6.5mm

Self tapping


Pelvic Fragment Set

Includes reduction clamps for manipulation of pelvic fractures

Screws 3.5/ 4.5/ 6.5mm sizes

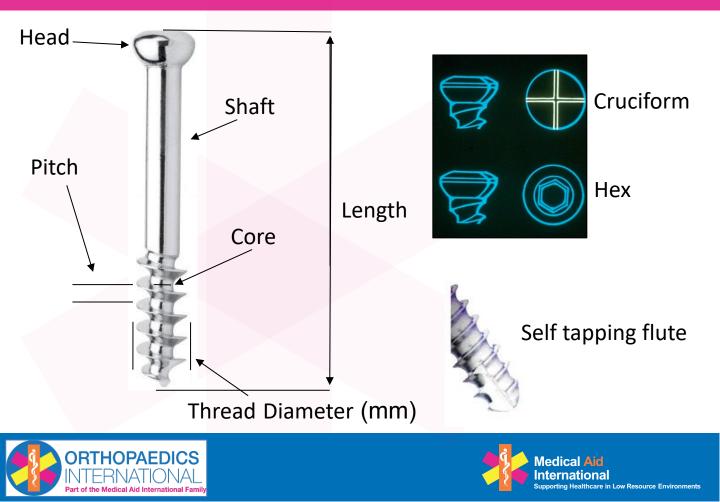
Self tapping

Types of Screw

Cortical

Cancellous

Screw functions


1. To fix plates to bone

2. As Lag Screws to compress bone fragments

Anatomy of Screws

Cortical Screws

Cortical bone is hard, deep threads are not required for a secure hold

Cortical screws have a finer pitch

Cortical screws have a shallower thread and smaller outer diameter

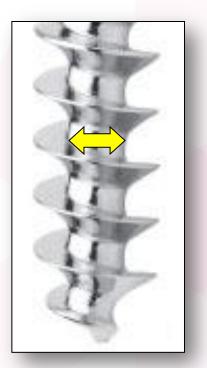
Design minimises insertion torque

Self tapping screws available

Types of Screw

Screws have deeper threads and coarser pitch, engages better in softer cancellous bone

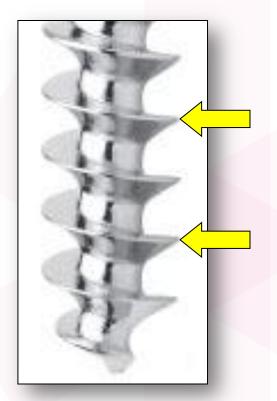
Surface area of screw which is in contact with the bone is maximised increasing screws holding power


Due to softer bone, screw only requires minimum torque to insert

Possible to lag fracture

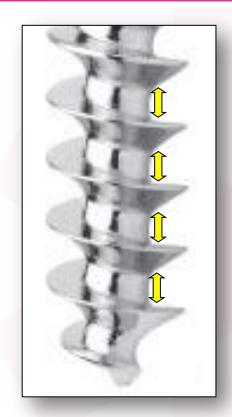
Screw Core Diameter

Core diameter relates directly to screw shear force resistance


Larger core = stronger screw

Larger core = more bone removal

Screw threads


Total surface area of threads on bone determines pull-out strength

Deeper threads provide much better purchase

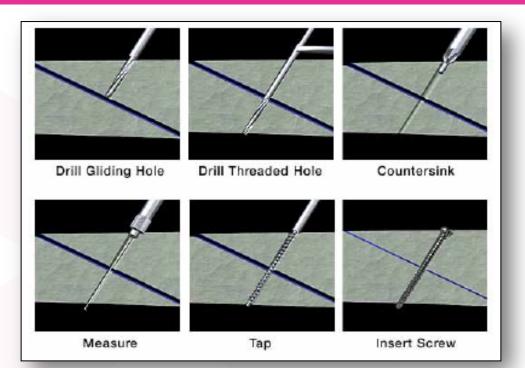
Screw thread pitch

Distance between screw threads

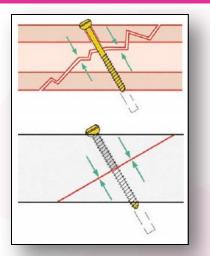
Each screwdriver rotation advances screw into bone equivalent distance to that of the screw pitch

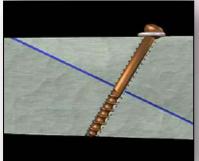
This dimension is primary determinant of amount of torque required for insertion

Fine pitch requires less torque than a coarse thread screw as it will not travel as far with each turn of the screwdriver


Insertion technique

Cortical Lag Screw insertion technique



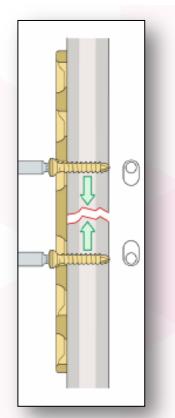

Result = Interfragmentary Compression

Cancellous Screw insertion technique

Countersinking is not required

Washer can be used to spread forces of the screw head over a greater surface area

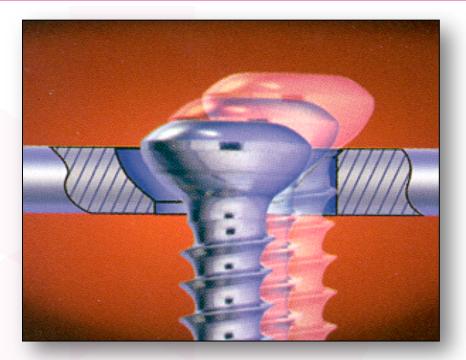
Interfragmentary compression


Lag Screw Workshop

Compression plating

Transverse or short oblique fractures

Exerts compression in the direction of the long axis of the bone


Widely used in fracture management

Approx. 1mm axial compression across fracture gap

Compression plating

Spherical, sliding-slope plate hole design

Compression plating technique

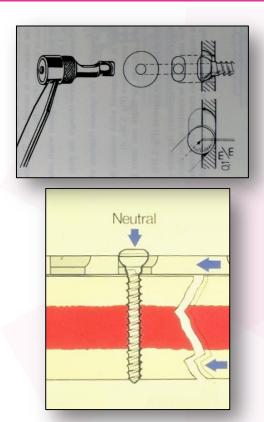
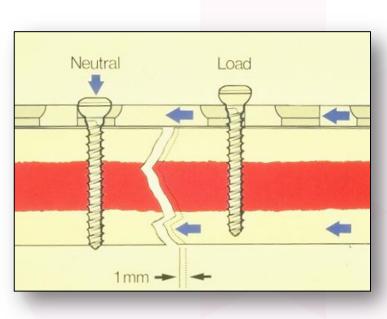


Plate is positioned over the fracture site

In the first plate hole, the drill guide is used in the Neutral position

The hole is drilled

Screw Length is measured


The hole is tapped (if necessary)

The first screw is inserted, but not tightened completely

Compression plating technique

The second screw should be located on the opposite side of the fracture - as close as possible to the fracture site

> The drill guide is used in the load position

The hole is drilled/ measure

Insert screw and tighten each in turn to achieve compression

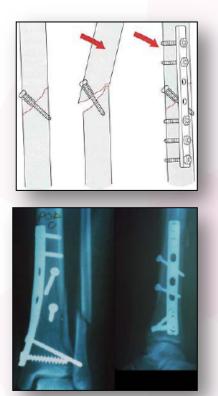
Compression plating workshop

Plate types and their functions

Protection/ Neutralization Plating

Diaphyseal fractures Supplements lag screw fixation

Buttress Plating


Epiphyseal and Metaphyseal fractures Supplements lag screw fixation Prevents axial deformity due to shearing or bending

Neutralisation/ Protection plating

Lag screw alone will not stand forces and will require plating

Increases fixation strength

Less chance of failure

Narrow, broad and semi tubular

Thank you

Medical Aid International

Supporting Healthcare in Low Resource Areas

ORTHOPAEDICS INTERNATIONAL

Part of the Medical Aid International Family

